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Abstract 

The present paper is a study of aerodynamic noise spectra 
from model functions that describe the source.  The study 
is motivated by the need to improve the spectral shape of 
the MGBK jet noise prediction methodology at high 
frequency.  The predicted spectral shape usually appears 
less broadband than measurements and faster decaying at 
high frequency. Theoretical representation of the source is 
based on Lilley’s equation.  Numerical simulations of high-
speed subsonic jets as well as some recent turbulence 
measurements reveal a number of interesting statistical 
properties of turbulence correlation functions that may 
have a bearing on radiated noise.   These studies indicate 
that an exponential spatial function may be a more 
appropriate representation of a two-point correlation 
compared to its Gaussian counterpart.  The effect of source 
non-compactness on spectral shape is discussed.  It is 
shown that source non-compactness could well be the 
differentiating factor between the Gaussian and exponential 
model functions.  In particular, the fall-off of the noise 
spectra at high frequency is studied and it is shown that a 
non-compact source with an exponential model function 
results in a broader spectrum and better agreement with 
data.  A recent source model proposed by Tam et al. that 
represents the source as a covariance of the convective 
derivative of fine-scale turbulence kinetic energy is also 
examined. 
 

1. Introduction 
A physics-based methodology utilizing the averaged 
equations of motion is used to assess jet noise spectra as a 
function of the source model function.  The focus here is on 
small-scale turbulence noise that dominates the spectra at 
subsonic Mach numbers.  It is generally accepted that 
sound generation in jets is a by-product of the unsteady 
features of the flow.  Any flow manipulation intended to 
reshape the spectra and subsequent perceived noise level 
ought to affect the unsteady characteristics of the flow.   
 
Mixing enhancement devices such as chevrons and tabs are 
known to alter turbulence statistics1 and change the time-
and length-scales of noise generating eddies. These flow 
modifications directly impact the sound field by, for 

example, reducing the low-frequency noise at the cost of 
adding to the high-frequency content.  
  
As such, it is not unreasonable to argue that modeling of the 
unsteady behavior of the flow as supported by a number of 
isolated test configurations may not lead to a reliable 
prediction tool.  In an ideal situation, one might attempt to 
solve the full compressible Navier Stokes equations without 
resorting to any modeling closures.  In fact, it is simply a 
matter of time before Direct Numerical Simulations (DNS) 
should solve the far-field jet acoustics either directly or by 
some extension of the near-field solution2.  Clearly, the 
computational demands of a typical high Reynolds number 
jet leave little room, at least in the near future, for DNS as a 
design code.  Nevertheless, it could be an extremely useful 
tool in understanding the unsteady features of the jet in order 
to improve the source modeling.     
 
On the other hand, the computational requirements are 
greatly reduced if the governing equations are spatially 
filtered, as is done in the Large Eddy Simulation (LES) [e.g., 
Ref. 3, 4, 5], and the effect of subgrid scales (SGS) is 
modeled.  This approach is successful in capturing the 
distinct directivity of supersonic jets that results from large 
scales of motion (instability waves) and dominates the 
general noise picture near the down-stream axis.  But it might 
also suffer from a neglect of high-frequency noise resulting 
from subgrid scales.  A recent study by Seror et al.6 calculates 
the acoustic pressure from the filtered Lighthill’s stress tensor 
as well as the full tensor and concludes that the SGS part of 
the tensor needs to be taken into account in order to recover 
reliable high-frequency results.  One must also be careful 
about the selection of the subgrid scale eddy viscosity model 
e.g., constant vs. dynamic Smagorinsky coefficient, as well as 
the inflow perturbations used in the simulation.  LES 
predictions of Morris et al.3 appear to benefit from the 
dynamic model and narrow down some of the usual over-
predictions in turbulence and noise.  
 
Physics-based prediction methods such as MGBK7 or Tam 
and Auriault’s8 fine-scale model heavily rely on model 
functions that express the statistical properties of noise 
sources.  These predictions use the averaged equations of 
motion; hence the unsteady features of the flow are entirely 
described by two-point, space-time correlation models.  Any 
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shortcoming in the predictions should be directly linked to 
the model.  Other phenomena such as refraction and 
convection impact the directivity of jet noise. 
 
Woodruff el al.9 study the isotropic source model in the 
original MGBK noise prediction methodology10 and 
examine alternative representations for the turbulence 
spectra.  They propose an energy spectrum function for the 
two-point velocity correlation to satisfy the Kolmogoroff 11 

spectrum law in the inertial sub-range. In particular, they 
examine a wave-number-dependent Gaussian function for 
the temporal part of the correlation, as opposed to the usual 
separable space and time functions.  Here the characteristic 
frequency is scaled based on the spatial wave-number k and 

the turbulence dissipation rate ε  as τ ε
o

k−1 2 3 1 3~ / / .  The 

predicted spectra do not appear to offer noticeable 
improvement over the conventional MGBK methodology 
that uses a separable correlation function and calculates a 
characteristic frequency from the turbulence kinetic energy 

κ as τ κ ε
o

−1 ~ / .  Nonetheless, near 90o angle, they report 

slight improvement in their spectral shape. 
 
Tam et al.8 model their source as a two-point correlation of 
the convective derivative of kinetic energy of small-scale 
turbulence.  They use RANS to calculate the time- and 
length-scales of the noise sources as is done in the MGBK, 
and predict noise spectra in good agreement with data at 
mid angles. 
 
In all, the noise from small scales of motion, which are 
usually broadband in nature and cover a range of observer 
angles, remains a significant part of the jet noise spectra.  
Indications are that at high subsonic Mach numbers, and 
heated jets in particular, instability-associated noise may 
dominate the low end of the spectra at shallow angles.  On 
the other hand, one might argue that the mean-flow effects 
could also play a role, by diverting the high-frequency 
noise of small-scale turbulence away from the axis and 
creating a region near the zone of silence that is dominated 
by low-frequency noise.   
 
In this work, alternative representations of the source in 
modeling the quadrupole terms of Lilley’s equation are 
examined. We concentrate on 90o emission angle where 
shear-noise is not a factor and the spectral shape is 
predominantly defined by the self-noise component.   
 
The paper begins with some preliminary formulation of the 
governing equations.  Section 2.2 derives expressions for 
source and non-compactness factor as a function of the 
proposed models.  It is shown that the fall-off of the high-
frequency noise becomes less steep when an exponential 
spatial function with an appropriate temporal function is 
selected and non-compactness effects are included.  Section 
3 compares Tam and Auriault’s model8 with the MGBK 
model as proposed in Ref [7].  It concludes that the spectral 

shape at 90o should be identical if consistent assumptions are 
used.  Some concluding remarks on future directions for a 
physics-based modeling approach is given in the summary. 
 

2. Sound Spectral Density 
Application of Lilley’s equation to the problem of jet noise 
and the significance of various source terms has been the 
subject of numerous discussions in aeroacoustics.  In a recent 
article, Goldstein12 gives an exact form of the equation with 
the dependent variable defined such that the source is of 
quadrupole/dipole nature.  The quadrupole source is second-
order in velocity fluctuations and is the sum of the commonly 
known self- and shear noise terms.  The dipole term is 
produced by the fluctuating sound speed due to temperature 
fluctuations. 
 
The far-field spectral density due to sources of Lilley’s 
equation may be expressed as integration over the source volume 
�
y  

 

p x G x y G x y Q y

d dy

y

2

12
2 2

11

( | ) ( , / , ) ( , / , ) ( , , )

. ( . )

*& & &

&

& &

&

&

&

&

&

&&

ω ξ ω ξ ω ξ ω

ξ

ξ

= − +

×

��

            
G is an appropriate Green’s function, * denotes a complex 
conjugate, and Q12 is the source spectral density which is 
formed from a Fourier transform of a two-point space-time 

correlation between source points 
& & &

y y
1

2= − ξ /  and 
& & &

y y
2

2= + ξ /  separated by time τ  

Q y R y e di

12
( , , ) ( , , )
& & & &

ξ ω ξ τ τωτ=
−∞

+∞

�  .        (1.2) 

If we assume that the variation of the magnitude of the 

Green’s function with respect to 
&

ξ , within the source region 
where Q12 is non-zero, is negligible compared to that of its 
phase then 
 

G x y G x y G x y e i k* .( , / , ) ( , / , ) ( , , )
& & & & & & & & & &

− + ≈ −ξ ω ξ ω ω ξ2 2 2 ,   (1.3) 
 
where 

&
k  is a wave number of magnitude (ω /a∞ ) and direction 

(
& &
x y− ).  Here ω is the frequency at the observer location and a∞  

denotes the ambient sound speed.  Equation (1.1) is now written as  
 
 

p x G x y e d R y e d dy
y

i ik2
2

( | ) ( , , ) ( , , ) .& & & & & & &

& &

& &

ω ω τ ξ τ ξωτ

ξ

ξ= � � �−∞

∞ − .  (1.4) 

It is argued that changes in retarded time across a correlation volume 
element are more likely to be small if the correlation is written in a 
frame 

&
x '  moving with convection velocity Uc  (i.e. 

& & &
x x i U t

c
' = − ) 

of the turbulent eddies.  Experimentally, the correlation R y( , , )
*

&

ξ τ in 
a jet flow describes a fluctuating pattern in a moving frame and is 
expressed as 
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R y R y i U
m m m c

( , , ) ( , , ),
*

&

*

& & &
&

ξ τ ξ τ ξ ξ τ= = − .   (1.5) 

 
Source frequency Ω  is related to the observer frequency 
through the usual Doppler effect Ω = −ω θ( cos )1 M

c
.  

Making a transformation to the moving frame, we find 

− + = − +
&

&
&

&

k k
m

. .ξ ωτ ξ τΩ , therefore 

 

e d R y e d e d R y e di i k i

m m

i k

m

m

mωτ

ξ

ξ τ

ξ

ξτ ξ τ ξ τ ξ τ ξ
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−
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&

& &

&

& &
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        (1.6) 
 
Now the noise spectral density with respect to the moving frame 
is given as 
 

p x G x y e d R y e

d dy

y

i

m m

ik

m

m

m2
2

17

( | ) ( , , ) ( , , )

. ( . )
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2.1 Self Noise Spectra 

For brevity, subscript m is suppressed in this section, and 
&

ξ  is 
used as the separation vector with respect to the moving frame.  
 
 To assess the far-field mean-square pressure due to the self-noise 
term only, we write Lilley’s equation in a coordinate 

&

x '  moving 
with convection velocity Uc   
 

L p V x D
u u

x x
self

i j

i j

( ; , )
( )

'

' '1

2

=
∂

∂ ∂

�
��

�
��

ρ  .    (2.1) 

Here L is Lilley operator, V=U – Uc , and the density ρ has been 

moved to the right of operator D t V x= ∂ ∂ + ∂ ∂/ / '
1 assuming 

that flow is locally parallel and that density fluctuations are small 
so ρ is the mean density.  The Green’s function to the above 

equation for a source of type D e x xi t

o
{ ( )}' '− −Ω δ & &

is 

 

L S e V x D e x r r ri t i t

o o
( ; , ) { ( ) ( ) ( ) / }.' '− −= − −Ω Ω

1 1δ δ ϕ ϕ δ    (2.2) 

 
In the high frequency limit, S is given as 
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R
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where 

ζ θ= � g r dr
r

( , )
0

.                             (2.4) 

 
Subscript o refers to source location and the shielding function 
g r( , )θ  is defined in Appendix A.   
           
The above expression for S is applicable outside the zone of silence 

of a source only, where the shielding function g r2 ( , )θ  is positive at 
all radial positions; hence there is no shielding.  The acoustic 
pressure due to the above source and Green’s function becomes
  

p x t S x t y t
u u

y y
dt dy

self

i j

i jy

( , ) �( ' , ; , )
( )

'& & & &

&

=
∂

∂ ∂��
−∞

+∞

1

2

1
ρ ,        (2.5) 

�( , ; , )
'S x t y t

& &

1
 is the inverse Fourier transform of S x y( ' , , )

& & ω  
        

�( , ; , ) ( ' , , )' ( )
S x t y t S x y e d

i t t& & * *
1

1

2
1= − −

−∞

+∞

�π Ω ΩΩ
                              (2.6) 

Upon transferring the derivatives from the source to the Green’s 
function in (2.5), and making the approximation that the variation of 
the magnitude of the Green’s function S x y( ' , , )

* * ω  with respect to 

separation vector 
&

ξ  within the source region is negligible compared 
to that of its phase, we find 
 

p x S x y S x y I y dyself ij kl ijkl

y

2 ( | ) | , ( ' , , ) , ( ' , , )| ( , ) .
& & & & & & &

&

ω = � Ω Ω Ω

               (2.7)                   
Subscripts on S refer to derivatives with respect to source 

coordinate 
&
y , and the phase factor e

ik−
&

&

.ξ  is now included with 

the source correlation Ii j k l .  In addition, we have neglected 

the mean density gradients so that density ρ is included 
within source correlation function 
     

I y u u u u e e d dijkl i j k l

ik i( , ) ( )( )' ' .&

&& &

Ω Ω=
−∞

+∞
−��ρ τ ξξ τ

ξ

2
.       (2.8) 

  
The volume integration in (2.7) usually includes the most energetic 
parts of the jet.  For axisymmetric jets, the directivity factor may be 
averaged azimuthally with respect to source and observer 
circumferential angles to obtain a ring-source directivity factor, 
aijkl .   Subsequently, jet volume integration will be limited to radial 

and axial coordinates 
 

a S S d dijkl i j k l o≡
−

+

−

+

��1

4 2π
ϕ ϕ

π

π

π

π

| | ,, ,         (2.9) 

p x a I yij k l ij k r drdy2

0

2
1

2 10( | ) ( , )( ) . ( . )
&

"

�
ω π=

∞

−∞

∞

�� Ω
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Equation (2.10) is written in an expanded form for a unit ring-
source volume at point 

&

y   

( )

,

self Noise I a I a I a I a

I a I a I a I a I a

= + + +

+ + + + +

∑ 1111 1111 2222 2222 3333 3333 1122 1122

1212 1212 1133 1133 1313 1313 2233 2233 2323 2323

2

4 2 4 2 4
       

      
                  (2.11) 
Directivity factors a

ijkl
, and shielding coefficients β

ij
 are 

defined in Appendix A.  In axisymmetric jets,  
 
a a a a a a

a a

2222 3333 1212 1313 1122 1133

2233 2323

= = = =

=

, ,
  

 
At 90o (2.11) simplifies 
 

( ) ( ) ,

. ( . )

Self Noise I a I I a

o

∑ = + +

=

2 2 2

90 2 12

2222 2222 2233 2323 2233

θ
    
At this point, a physics-based modeling approach is employed to 
obtain closed-form expressions for the correlation coefficients 
appearing in (2.11) and (2.12).  For convenience, we assume that 
the joint probability distribution of velocities u and u’ at points 
&
y and 

&
y ' (separated in space and time) is normal and write the 

fourth-order cross-correlation function as a superposition of 
second-order correlations13.  In addition, the second-order 

correlation is assumed separable, i.e., u ui j R
i j

'
( ) ( )=
&

ξ τg .  

Here R
i j

( )
&

ξ  and g( )τ  denote the spatial and temporal parts of 

the correlation, respectively.  From (2.8), the axial correlation 
coefficient becomes 

 

I y R e d

e d
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i
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−
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�

ρ ξ ξ

τ τ

ξ

ξ

τ

G

G g

              (2.13) 

In homogeneous isotropic turbulence, the two-point 
correlation function has the form11   
  

R u f f fi j i j i j( ) [( ) / ]' '
&

ξ ξ δ ξ ξ ξ= + −1

2 1

2

1

2
.         (2.14) 

 
In the following discussion we examine Gaussian as well 
as exponential spatial functions f ( )ξ .   

 
2.2 Compact Eddy Approximation 
In a compact eddy approximation, the assumption is made that 
the eddy length-scale l is much shorter than the wavelength of the 
acoustic disturbances, i.e. ω l a/ ∞  is small compared to unity.  As 

such the factor e ik−
&

&

.ξ  is set equal to unity, which practically 

amounts to setting the wave number equal to zero. Thus the four-
dimensional transform (2.8) simplifies. 
 

I y u u u u e d dijkl i j k l
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&
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+∞

��ρ τ ξτ

ξ

2   

    (compact-eddy).  (2.15) 
 
Using an appropriate model in (2.13) with k = 0 one finds 
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         (2.16) 
 

with ξ ξ ξ
23

2

2

2

3

2= + .   Models (a) and (b) assume isotropic 

turbulence, whereas (c) and (d) use an axisymmetric 
turbulence constructed from a set of kinematically compatible 
scalar functions [Ref .7].  Length-scales "

1
 and "

2
 are 

proportional to ( ) //u
1

2 3 2 ε  and ( ) //u
2

2 3 2 ε , respectively.  
 
Consider the isotropic model, cases (a) and (b).  After 
substituting the remaining correlation coefficients into (2.12) 
(see Appendix B) we find 
 

( ) ( ) .Self Noise a a I o∑ = + =2 90
2222 2233 1111

θ        (2.17) 

 
The shielding coefficients β

i j
 that multiply directivity factor 

a
i j k l

 result in noise attenuation within the zone of silence.   At 

90o emission angle, Ω = ω , and the shielding function is 

g r a a2 4( ) ( / )= ∞ , where a is the sound speed at the source.  

Here g r2 ( ) has no zero crossing, therefore there is no turning 

point and β
i j
= 1. 

( ) | | ( ) ,Self Noise S k
a

a
I o∑ = ∞ =2 4 4

1111 90θ     (2.18) 

 
Away from 90o equation (2.11) should be used directly.  In 
addition, the shear noise contribution needs to be included as 
described in Ref [7].  Model (c) shows that the directivity of 
jet noise with respect to its level at 90o is a function of 
anisotropy of turbulence7.  
    



 

                     5 

Let τ
o
 be the inverse of the characteristic source frequency, 

which is proportional to turbulence kinetic energy and its 

dissipation rate as τ α ε κ
o o

− = =1

1
Ω / .  Eddy length-scale is 

obtained from " ~ τ
o
u

1
.  At this point noise spectrum at 90o 

may be calculated using models (a) or (b) in (2.18) and 
with an appropriately selected proportionality factor for " .  
It is clear that the spectral shape will be the same for both 
models. For instance, if the proportionality factor selected 
for length-scale "  in model (b) was larger than that of 

model (a), say by factor ( / ) /5 8 22 1 3π , then identical 
spectra are obtained. 
 
Upon examining the three-dimensional energy spectrum for 

a two-point correlation Ri j ( )
&

ξ  using models (a) and (b), it 

is found that both scale as fourth power of spatial wave 
number when wavelength is large.  However, in the inertial 
sub-range, their decay rate is substantially different.  The 
energy spectrum function, normalized with respect to 

( . )1 5 1

2u , is given as 
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        (2.19) 
 
Figure 1 shows that the energy spectrum for the 

exponential function (model b) decays as k −2  at large 
spatial wave number.  This is reasonably close to the 

proposed Kolmogoroff’s k −5 3/ scaling law11. Model (a), 
however, presents a much faster decay rate.  These 
comparisons suggest that when non-compactness effects 
are accounted for, the two models, if properly used, should 
produce different spectral decay at high frequency (this will 
be shown in section 2.4). 
 
Reference [11] argues that the exponential function may 
not be strictly correct on the grounds that (1) it is not 

parabolic at its vertex, (2) the lateral correlation u u1 1

'  with 
&

ξ  in direction of ξ 2  remains positive for all ξ 2 ; whereas 
the correct curve must become negative for large ξ 2 . 
 
Recent measurements of Bridges et al.14 appear to suggest 

that a two-point correlation Ri j ( )
&

ξ  constructed from an 

exponential spatial function according to (2.14) provides a 
better fit to data relative to the Gaussian function (Fig. 2).  

2.3 Source Non-Compactness 
Here we explore the effect of source non-compactness on 
noise spectra using Gaussian and exponential models (a) and 

(b).  To carry out the integration with respect to 
&

ξ  in (2.8) or 
(2.13), a convenient coordinate transformation has one of the 
axes ξ i  aligned with vector 

*
k . 

      In a spherical coordinate 
&

ξ ξ α α ϕ= (cos , sin cos ,  

sin sin )α ϕ , ξ1 is aligned with wave number 
*
k  such that 

& &

k k. cosξ ξ α= .  Equivalently, one might select a cylindrical 

coordinate system 
&

ξ ξ ϕ ϕ= ( , cos , sin )1 r r  with ξ1 in the 

direction of 
�
k  such that 

* *
k k.ξ ξ= 1.  In any event, when 

turbulence is isotropic, the final result should be independent 
of the direction of wave number 

*
k .  Now 

with f ( ) exp( / )ξ πξ= − 2 2
"  we find 

   

I y u N k N k
k

1111

2

1

2 2 3

2 21

2 2 8
( , ) ( ) ( ) ( ) , ( ) exp( )
&

" " "
"

Ω Ω= = −ρ
π

G

           (2.20) 
 
where N k( )"  denotes the non-compactness factor.  Using an 

exponential function f ( ) exp( / )ξ πξ= − "  we find 

I y u N k

N k
k

k k
k
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1111 2

2

1

2 2 3

5 1

2

2

2
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20( 3
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( , ) ( ) ( ) ( ) ,

( ) ) [ tan ( )

( )
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]. ( )
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" "

"

"

" "

"

"
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= −
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−
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π
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π
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π

π

G

         
Applying the law of limits repeatedly, the last expression 
for N k( )"  becomes 1 as k"  approaches zero. Figure 3 shows 
that the non-compactness factors equal 1.0 for 0 2≤ <k"  and 
decay rapidly for k" > 7.  The Gaussian function appears to 
produce a faster-decaying non-compactness factor.  The 
above non-compactness factors repeat for other correlation 
coefficients as noted in Appendix B. 

 
Since " ~ τ ou1 , we find k u ao" ~ ( )( / )ωτ 1 ∞ .  Ratio u a1 / ∞  

is usually smaller than 1.0 (of the order of 0.2 for the more 
energetic parts of the jet).  In the compact eddy 
approximation k"  was assumed small hence N k( )"  was set 
equal to 1.0 for the entire range of the wave number.   As 
frequency ω  becomes very large,ωτ o  may be large enough 

to reduce N below 1.0  (Fig. 3). 
  
The implications are that the effect of N k( )"  on spectra, if 
any, should be a slower decay rate at high frequency for the 
exponential function relative to the Gaussian.  It is also 
evident that both models produce a faster decay at high 
frequency when the sources become non-compact.  However, 

"

k"(
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as we shall see shortly, these effects are visible only in the 
context of the spectral shape function G( ) ( )Ω N k" . If 
G( )Ω  has already decayed far enough before N k( )"  takes 
effect, then both models produce identical spectra.  
 
Figure 4 shows the MGBK prediction using Gaussian- 
isotropic source model (a).  The effect of source non-
compactness on predicted noise spectra for a Mach 0.5 cold 
jet is of the order of 0.12 dB at the high end of the spectra. 
Here the temporal part of the correlation was selected as7  
 

g( ) exp{ ( / ) ( / ) }τ σ τ τ= − +2 2 2

o
.               (2.22) 

 
Constant σ  = 0.8 as was originally proposed in Ref [7]. 
One might expect a similar effect at other angles, 
asN k( )" is a common factor throughout Eq. (2.11). 
 
Next we explore the MGBK spectral shape function. 
 
2.4 Spectral Shape Function 

Apart from factor k 4 , which appears due to transfer of 
derivatives from source to the Green’s function (not 
included in the following discussion), the spectral shape 

function, denoted as � ( )F o1 ωτ , is simply the product 

G( ) ( )Ω N k" .  Function G( )Ω  is obtained from (2.13) and 
(2.22) 

� ( )
[ ( / ) ]

( / )
( )F

K
N k

o o

o

o

1

1

2

2

1 2

1 2
ωτ στ

σ τ

τ
=

+

+

Ω

Ω
"              (2.23) 

The normalized  spectral function becomes 
 

� ( )
[ ( / ) ]

( / ) ( )
( ) ,

( cos ) .

F
K

K
N k

M

o

o

o

c

1

1

2

2

1

1 2

1 2

1

ωτ
σ τ

τ σ

ω θ

=
+

+

= −

Ω

Ω

Ω

"
.               (2.24) 

 
As σ  becomes very small one finds 

" "im F N k
o

σ τ→
=

+0
1 2

1

1 2
�

( / )
( )

Ω
 .               (2.25) 

 

Figure 5 shows the spectral shape function � ( )F o1 ωτ  for 

model (a), with " / ( ) .U oτ = 0 20 , which applies to the 

more energetic parts of the flow.  Fig 5a shows a negligible 
role for the non-compactness factor at σ = 0 80. . The 
effect of N k( )"  becomes evident as shown in Figures 5b 
and 5c.  It should be noted that when σ → 0 the compact 
source model becomes increasingly inadequate (resulting in 
unusually high level of noise at high frequency). 
 
Comparison of the spectral shape functions of models (a) 
and (b) shows a slower high- frequency decay for the 
exponential model (Figs. 6a and 6b). Shown in  

Fig. 7 is the MGBK predicted spectrum for Mach 0.5 cold jet 
with σ = 0 , including the non-compactness.  Model (b) 
predicts a broader spectrum and noticeable high-frequency 
improvement relative to model (a).  Here, the location of the 
peak frequency was adjusted slightly by selecting 

proportionality constant α 1 , (τ α ε κo

− =1

1 / ) as 0.225 and 

0.170 for models (a) and (b) respectively. 
 

3.  Tam and Auriault’s Model 
In reference [8], Tam et al. compute the fine-scale turbulence 
noise from an equation similar to (1.4).  Here we compare the 
Green’s function as well as the source cross correlation 
functions between the MGBK model and Tam’s approach. 
 
3.1 Green’s Function  
The Green’s function to the linearized Euler equations for a 
locally parallel flow is the solution to 
 

L Ge U x e x xi t i t

s( ; , ) ( )− −= −ω ω δ1

& &
 ,       (3.1) 

 
where ω  denotes source frequency with respect to stationary 
frame 

�
x , 

�
xs  is the source location, and L is Lilley’s operator.  

Tam and Auriault 15 recast the problem into an adjoint 
operator for the adjoint Green’s function Ga , which is related 

to the Green’s function G of the original problem by a simple 
switch of the source and observer locations 

&
xs  and 

&
xo .  The 

final result for an axisymmetric mean flow (now multiplied 

by 2 2π a∞  to compare with the high-frequency solution) is 
given as  
 

G x x G x x

G x x
e

k a R
f r m r R

o s a s o

a s o

i k x R

m

m

s o

( , , ) ( , , )

( , , ) ( ) cos , .
( cos )

& & & &

& &

ω ω

ω
π

ϕ
θ

=

= ≤
− −

∞ =

∞

∑
4 0

           (3.2) 

Function f rm ( ) is obtained by solving an ordinary 

differential equation and matching the above inner solution 
with the outer solution at the jet boundaryRo . 

 

G x x
e

ka R
i J A H

m r R

a o

i k x R
m

m m m m

m

o

( , , ) [( ) ( ) ( )]

cos ,

( cos )
(

( . )

& & ω
π

ε χ χ

ϕ

θ

= − +

× ≥

− −

∞ =

∞

∑
4

1)

0

3 3

 
where χ θ= kRo sin .    

      
The corresponding high-frequency solution16 for a non-
convecting (Ω = ω ) monopole type source takes one of the 
following forms depending on the location of the source ro  

relative to the zero crossing point rσ of the shielding function, 

i.e. g r( )σ = 0 (see Appendix A for the definition of g). 
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G x y
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e
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o

o o
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r o o

o
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/
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/
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with  h g h r dr
r

2 2

0
= − = �, ( , )ζ θ    

or  
 

G x y
i

a kR

a a

M r g
e

i k g g dr r r

o

o

o

o o

i kR

o o o

( , , )
/

( cos )

exp( [ ( ) cos( )] ),

/

& &
ω

π θ

ζ

ζ ϕ ϕ σ

=
−

× − − −� >

∞

∞

∞

∞

�
��
�
��4 1 2

1 2

0

  

                     (3.5) 

with ζ θ= � g r dr
r

( , )
0

. 

 
Figure 8 shows comparisons of the above Green’s 
functions for a stationary ring source at 7 diameters from 
the jet exit ( x D/ = 7), and with radius r Do /  indicated as 

a parameter. Computations were carried out for a range of 
Strouhal numbers (St f D U j= / ) for a Mach 0.9 cold jet. 

The agreement is generally good at high frequency.  As the 
Strouhal number is lowered, the high- frequency 
approximation appears to deteriorate.  Discrepancies 
become increasingly visible near the boundary of zone of 
silence as seen in figure 8c, with the adjoint Green’s 
function predicting a larger zone of silence.  For our 
purpose, we intend to compare the MGBK spectrum with 

Tam’s solution at θ = 90o  and assess the high-frequency 
behavior.  Spectral peak for both Mach 0.5 and 0.9 cold jets 
is near St = 0.9, therefore the high-frequency solution is 
found suitable. 
   
It is noted that the Green’s function for a monopole type 

source scales as k −1 with respect to the wave number and 

as 1 1 2/ ( cos )− Mo θ  with respect to polar angle. 

 
3.2 Source Model 
Tam and Auriault8 propose a two-point, fourth-order, axial 
velocity correlation in a fixed reference frame 

Dq x t

Dt

Dq x t

Dt

q

c U

n
U

s s s

s s

s

( , ) ( , ) �
exp{

[( ) ] } ( .

& &

"

"

1 1

1

2 2

2

2

2 2

1

2 1

2

23

22
3 6)

=
−

− − +

τ

ξ

τ

ξ τ ξ

 
with 

& & &ξ = −x x1 2 , τ = −t t1 2 , ξ 23  as defined earlier, and 
 

U the mean velocity at the source location, which can 
 be replaced with the source convection velocity. In this 

section we use 
*

ξ  as separation vector in a fixed reference 
frame. 
 
The corresponding axial correlation coefficient used in the 
MGBK describes the cross correlation of the Reynolds stress 
components rather than their convective derivatives. 
Following the usual MGBK methodology, the fourth-order 

correlation I u u u u1111 1 1 1 1( , ) ( )( )' 'ξ τ ρ ρ=  is expressed as a 

sum of second-order tensors. The element of I1111  

contributing to the noise field is simply 2 11
2 2R ( ) ( )

&

ξ τg  
which, upon using model (a) in (2.14), and making a 
transition to a fixed reference frame, becomes 
 

I u U
1111

2

1

2 2

2 23

2 2

2 1

2

23

2 2

2 1 2

3 7

( , ) ( ) ( ) exp{ [( )

]} ( ) ( . )

&

" "
ξ τ ρ

π
ξ

π
ξ τ

ξ τ

= − − −

+ g

   

and temporal function is given by (2.22). 

 

Factor ( / )1 23

2 2− π ξ "  in (3.7) reduces I1111( , )
*
ξ τ  to zero as 

the normalized lateral distance ( / )ξ 23 "  approaches 1 / π .  

Beyond this point the correlation is practically zero.   
 
In order to compare correlation functions (3. 6) and (3.7) on 
an equal basis, suppose we relate time- and length scales and 
define the following dimensionless parameters 
 

"

"

" "= = = =( ) , , / , /.2

2
20 5π

τ τ ξ ξ τ τ τ
n

s o s i i s s
.

           (3.8) 
 
Now the lateral correlations, with zero time-delay, and 
normalized in magnitude become 
 

Dq x t

Dt

Dq x t

Dt
ns s

( , ) ( , )
exp1

1

23 1

1

23

22
+

= −
ξ

ξ"� 	       (3.9) 

and 

I
n

n
1111 23 23

2 2

23

20 1
2

2
2( , ) ( ) expξ ξ ξ= − −

"
"� 	 .     (3.10) 

 
Figure 9a shows that (3.9) and (3.10) decay somewhat 
differently. Tam and Auriault’s correlation (3.9) does not 
have a zero intersect and decays at a slower rate. Limited data 
available on fourth-order correlation measurements17 seem in 
better agreement with the MGBK model.  However, this 
difference may practically be insignificant in noise 
prediction.  An interested reader may find more information 
on the second-order lateral correlation in a book by 
Townsend18.  
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Aside from ξ 23 , which is now set equal to 0.0, the two 

models appear similar. The normalized axial cross 
correlation functions are:   
 

Dq x t

Dt

Dq x t

Dt

n

s s
( , ) ( , )

exp{

( / ) }, ( . )

1

1

1 2

2

1

1

22 3 11

+
= −

− −

ξ
α ξ

ξ τ α"

 

 

I n
1111 1

2 2

1

22( , ) exp ( / )ξ τ σ τ ξ τ α= − + − −"
 � 

                  (3.12) 
with α τ= ( / )"s sU .    

 

Using Tam’s constants ("
"s sc c= =κ ε τ κ ετ

3 2/ / , / , 

c c
"
= =0 256 0 233. , .τ ) one finds α κτ= ( / )( / ).c c U

"

0 5 .   

Let’s set U equal to the convection velocity 0 65. U
J

. In the 

more energetic parts of the flow (mixing layer) we chose 

( / ) ..κ 0 5 0 12UJ ≅ , and find α ≅ 0 20. .  

  
Figure 9b shows Tam’s correlation coefficient (3.11) and 
the MGBK model (3.12), with σ = 0.  The effect of small 
parameter σ  is shown in figure 9c.  Aside from the slight 
difference described above in comparing the lateral 
correlations, the two models exhibit similar features. 
   
Next, the spectral shape functions are compared. 
 
3.3. Spectral Function 
The MGBK spectral function was written earlier in a 
moving frame as a Fourier transform of the temporal 

function g2 ( )τ , multiplied by the non-compactness factor.  

In a fixed frame variable τ  appears in ( ξ τ
1
−U ), hence 

the spatial function needs to be include in the integration.  

However, with a simple transformation 
& &

ξ ξ τ
m

U= −  (see 

1.6), the spectral shape function (2.24) is recovered.  For 
comparison with Tam’s spectra we now let τ τo s= 2  and 

relate " to " s (see 3.8).  

 

� ( )
[ ( ) ]

( ) ( )
( ) ,

( cos ).

F
K

K
N k

M

s

s

s

C

1
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2

2

1

1

1

1

ωτ
σ τ

τ σ

ω θ

=
+

+

= −

Ω

Ω

Ω

"

                    (3.13)

      
N k( )"  for model (a) is given in (2.20).  As σ  become 
small one finds 

" "im F N k
s

σ τ→
=

+0
1 2

1

1
�

( )
( )

Ω
 .                (3.14) 

 

Following Eq. 33 [Ref. 8], Tam and Auriault’s spectral 

function �F2 , is written for a unit volume of turbulence at 
&
y     

� ( ) ( , , ) ( , , ) exp{

[( ) ] } . ( . )

F p y x p y x d
U

n
U i d d

s a a

s

s

2
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2
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ωτ ω ξ ω ξ
ξ

τ
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"

"

&
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Here pa  is the direct Green’s function, which is obtained 

from switching source and observer locations in the adjoint 
problem.  As was done earlier, the product of the Green’s 
functions is approximated as the magnitude at the center of 
the correlation volume multiplied by a proper phase 
 

p y x p y x p y x e
a a a

i k( , , ) ( , , ) ( , , ) .& & &

&

& & &

& &

− + + ≈ −ω ξ ω ω ξ2
.        (3.16) 

 

Phase factor 
& &

k .ξ  should not carry a preferred direction since 

rays are emitted at all angles and separation vector 
&

ξ  may 
also take any direction. It follows 
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or upon integrating over τ   
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&

As before, make a coordinate transformation with respect to 

dummy variable 
&

ξ  such that ξ1 aligns with 
*
k  (i.e. 

& &

k k.ξ ξ= 1).  The component of U in direction of 
&
k  becomes 

U Uθ θ= cos .
 

� ( ) ( , , ) exp ( )

exp{ }cos[( ) ] .

F p y x
n U

d d

U
n

U
k d

s a

s

s

s

s

2

2 2

2 3

1

2 3

2

0

1 1

2
1

2 2

2

3ωτ ω
ω

ξ ξ

ξ

τ
ξ

ω
ξ ξ

θ θ

= − −

× − − −

�
��

�
��

−∞

+∞

−∞

+∞

∞

��

�

& &
"

"

"
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"

Next transition to polar coordinates 
*

ξ ξ ϕ ϕ= ( , cos , sin )
1

r r  

� ( ) ( , , )
/

( )

exp ( ) . ( . )
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Expression (3.17) is now normalized to obtain the spectral 
shape function. We also take out the magnitude of the 
Green’s from the spectral function (as was done in 3.13).   

For a compact eddy (k = 0)  

� ( )
( )

exp ( )F
n U

s

s

s

2 2

21

1

1

2 2
ωτ

ωτ

ω
=

+
−
�
��

�
��"

"
  ,  

        (compact eddy)            (3.18) 

and

� ( )

( ) ( cos )

exp ( )F
U

a

n U
s

s

s

2
2 2

21

1 1

1

2 2
ωτ

ωτ θ

ω
=

+ −
−

∞

�
��

�
��"

"
 , 

 

           (non-compact eddy).               (3.19) 
 
This result is the same as that reported by Tam and 
Auriault, but was derived without resorting to the following 
approximation, which was suggested in Ref. [8].
 

p y x p y x p y x
a a a

ik( , , ) ( , , ) ( , , ) exp{ cos }
& & &

&

& & &

− + + ≅ −ω ξ ω ω ξ θ2

1

 
At this point let’s compare (3.19) with the MGBK shape 
function (model a) at 90o emission angle.  Figure 10 shows 
comparisons with �s sU/ τ  = 0.20 as was selected earlier. 

 

The MGBK spectral shape (with σ = 0 20. ) agrees quite 

favorably with Tam’s results at U a/ .∞ = 0 325 and 0.65 

as shown in figure 10a and 10b, corresponding to jet exit 
velocity of U aJ / .∞ = 0 50  and U aJ / .∞ = 10  

respectively. 
 
It is noted that in comparing the above spectral shape 
functions, we have deliberately dropped the wave number 

power k 4  from MGBK model (see 2.18), and k 2  from 

Tam’s model.  In the MGBK approach, factor k 4  appears 
when two spatial derivatives and one convective derivative 
are transferred from source to the Green’s function.  Tam 
and Auriault, on the other hand, maintain that convective 
derivative is included in their source modeling.  As a result 
the Green’s function pa  remains of the order of k (see 

equation (28) of Ref [15]), which incidentally indicates that 
source qs should be of quadrupole type.  With the 
convective derivative now hidden in the source, the power 

spectral function becomes proportional to k 2 .   
 
Morris and Farassat19 described this in more detail in a 
recent paper and suggested that a consistent approach 

should result in ~ k 4 for both MGBK and Tam’s analysis. 
 
Figure 11 shows the MGBK predictions for Mach 0.5 cold 
jet using model (a) and a spectral shape function that 
matches that of Tam and Auriault’s (curve 1). Predictions  

obtained by replacing the k 4 wave-number factor by k 2 (as 
in Tam and Auriault approach) are also shown.  In doing so, 
some minor adjustments had to be made in the calibration 
constant related to the source characteristic frequency to 
persevere the location of the peak spectra. The noise 

spectrum naturally becomes broader with the k 2 factor 
(compare 1 and 2), and improvements are noticed at both 
ends.  

  
Additional high-frequency improvement could be gained by 
simply removing the atmospheric attenuation built in the 
MGBK code from predictions and implying that it is built 
into the source model (as was done in spectral predictions of 
Ref. 8 at R/D = 100).  However, predicted noise spectrum 
should account for atmospheric attenuation.  This amounts to 
attenuating the high-frequency noise depending on the 
observer distance and atmospheric conditions (i.e., relative 
humidity and ambient temperature).   Noise measurements 
usually reflect the atmospheric attenuation.  Figure 11 (curve 
3) shows the significance of atmospheric loss on predicted 
spectra.  Although excellent agreement with data is thereby 
obtained, two very questionable steps were taken to predict a 
better spectrum. 
    
As was shown earlier (Fig. 7), good agreement with data 
could be achieved by selecting an exponential spatial function 
(model b) in place of the Gaussian function.  
 

4. Concluding Remarks 
In the preceding discussions, we examined alternative model 
representations for the two-point space-time correlation 
appearing in physics-based jet noise prediction 
methodologies.  It was argued that a proper representation of 
the source, consistent with the observations and accepted 
fundamentals related to turbulence statistics, should improve 
prediction of the flow-generated noise in the framework of 
Lilley’s equation.  The discussions centered on noise from 
small-scales of motion and at 90o observer-angle.  The main 
result of the study was described in Fig. 7.  It was shown that 
an exponential spatial function, with source non-compactness 
included, predicts a broader spectrum relative to a Gaussian 
function.  The effect of turbulence anisotropy may readily be 
accounted for by selecting model (d) of section 2.2 as a non-
compact source. 
 
Away from 90o, mean-flow refraction effects as well as 
convective amplification due to source motion become 
crucial in capturing the peak directivity that occurs near the 
down-stream axis.  A high-frequency approximation offers an 
analytical solution to the Green’s function, but comparisons 
of section 3.1 indicate that it might not be an appropriate 
approximation at small Strouhal numbers.   
     A numerically computed Green’s function15 provides extra 
flexibility at low frequency, at the cost of added numerical 
intensity.     
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Appendix A 
Directivity factor for various quadrupole source 
components (in the absence of mean density gradient) is 

 

a
M a

S

a
g r

M a
S

a g r
a

S

a g r
a

S

c

o

c

o

o

1111

4

4

4 2

11

1122

2 2

4

4 2

12

2222

4 4 2

22

2233

4 4 2

23

1

2 1

3 8)

1 8)

=
−

=
−

=

=

∞

∞

∞

∞

cos

( cos )
( ) | | ,

( ) cos

( cos )
( ) | | ,

( / ( )( ) | | ,

( / ( )( ) | | .

θ

θ
β

θ

θ
β

β

β

Ω

Ω

Ω

Ω

  

The shielding function is  

g r
M a a

M

o

C

2

2 2 2

2

1

1
( , )

( cos ) ( / ) cos

( cos )
.θ

θ θ

θ
=

− −

−
∞  

     
It should be noted that correlation coefficients ai j k l  all 

have a Doppler-factor power of 4 in the denominator, 

which when multiplied by ( / )Ω a∞
4  makes ai j k l  

proportional to the factctor k 4 .   Shielding coefficients 

β i j  depend on the number of turning points of g r2 ( , )θ  

as well as location of source point ro  with respect to that of 

the turning point rσ .  For example, when there is only one 

turning point and r ro < σ , we have 
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Appendix B 

For a homogeneous isotropic turbulence correlation 
coefficients are related to the axial components with either 
Gaussian or exponential spatial functions 

f ( ) exp( / )ξ πξ= − 2 2
"  and f ( ) exp( / )ξ πξ= − � : 
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These relations hold for compact as well as non-compact 
source models. 
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Fig. 1 Energy spectrum for the exponential function f ( ) exp( / )ξ πξ= − " . 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2 Measurements of a two-point correlation ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )a R b R c R d R11 1 22 1 11 2 22 2ξ ξ ξ ξ  
  in a high-subsonic jet.  Eq. (2.14) with Exponential function (solid line); Gaussian (dashed-line). 
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Fig. 3 Effect of source non-compactness on the 

correlation coefficient with spatial function:  

model (a)  f ( ) exp( / )ξ πξ= − 2 2
"  (solid line); 

model (b) f ( ) exp( / )ξ πξ= − "  (dashed-line). 
  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4 MGBK Noise spectra for Mach 0.5 cold jet.  
Predictions with model (a);  compact source (solid 
line);  non-compact source (dashed-line); data  
(symbol). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Effect of source non-compactness on spectral 

shape function of model (a).  Compact 
source (solid line); non-compact source 
(dashed-line).   (a) U a/ . , .∞ = 0 50 1 0 ;  

(b) U a/ .∞ = 0 50 ; (c) U a/ .∞ =1 0 . 
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Fig. 6 Spectral shape function for the non-compact source 

with 

f ( ) exp( / )ξ πξ= − 2 2
"  (solid line); 

f ( ) exp( / )ξ πξ= − "  (dashed-line); 

(a) U a/ .∞ = 0 50  , (b) U a/ . .∞ = 1 0  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7  MGBK noise spectra for Mach 0.5 cold jet with a non-

compact source; 
 Model (a) (solid line); Model (b) (dashed-line); 

data (symbol). 
 

 
 
 
 
 
 
 
 
 
 
 
 

 ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8a  Comparison of the high frequency (HF) Green’s 

function with the adjoint Green’s function for a 
stationary ring source at indicated radial locations for 
a Mach 0.9 cold jet at St = 5.0. 
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Fig. 8b Green’s function comparison at St = 2.0. 

Fig. 8c Green’s function comparison at St = 0.90. 
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Fig. 9a Correlation coefficient I1111 23( )ξ : MGBK (solid line);  Tam et al. (dashed-line). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9b  Comparison of the axial cross-correlation coefficients 

of Tam et al. and MGBK. (i) Tam’s model (Eq. 3.11); 
(ii)  MGBK model (Eq. 3.12) with σ = 0.  

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Fig. 9c MGBK cross correlation function (Eq. 3.12)  

with σ = 0 40. . 
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Fig. 10  Spectral Shape function at 90o; MGBK (solid line); Tam et al. (dashed-line). 
(a) U a/ .∞ = 0 325 , (b)  U a/ .∞ = 0 65 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 11  Predictions for Mach 0.5 cold jet using a spectral shape function consistent with  
Tam et al. at 90o. 
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